■ Course Overview

Advanced Placement Biology is a lab-based science course presented at the introductory college level while being presented in high school. The goal of the course is to prepare students for the AP Biology exam given by the College Board. Successful completion of the course coupled with a score of 3 or higher on a 5 point scoring system may allow students to receive introductory-level university credit.

AP Biology is presented as not a mere accumulation of facts from topics, but a course that provides students with the conceptual knowledge to understand and explain how the individual topics in biology contribute to the formation of concepts. The students then begin to understand the relationships between the concepts in biology and the **major themes** in biology (1. science as a process, 2. evolution, 3. energy transfer, 4. continuity and change, 5. relationships of structure to function, 6. regulation, 7. interdependence in nature, and 8. science, technology, and society). Throughout the course, students will discover how the theme of evolution provides the foundation of modern biological models and thought, providing a unifying theme across all topics.

Students taking AP Biology need to be prepared for the rigor of the course. The curriculum is very broad, and as a result, students are expected to take responsibility for their learning. Students should be prepared to spend an average of one hour a night on reading the required section of text, as well as additional time for review, lab write-ups, etc. Class will meet on a revolving A/B block, and students will be in class for three 90-minute periods one week, followed by two 90-minute periods the next. Students will spend an average of 90 minutes a week in the lab, so *excellent attendance is mandatory*. In short, AP Biology requires tremendous dedication of time and students should take careful consideration of extra-curricular activities and work schedules before committing to the course.

Materials

- Life: The Science of Biology, 7th Edition by Purves/Sadava. (provided)
- Cliff's AP Biology Preparation Guide by Pack, A. (recommended)
- Lab Notebook (quad book or equivalent) (required)
- Scientific calculator (required)

■ Course Structure

I. Lecture

Most of the instruction in AP Biology will come in this format. Since this is a college-level class, the lectures will not be like traditional high school classes where notes are given in an outline format. Good note taking skills are definitely required.

II. Laboratory

The lab component of AP Biology is designed to provide students with the opportunity to observe several key concepts in biology and how those concepts are manipulated and controlled. There are 12 formal labs, in addition to numerous supplementary laboratory investigations. In addition to enhancing biological concepts, these labs are also designed to develop several important skills like: recording data accurately, thinking critically, analyzing data in many ways, creating experimental design, and using complex lab equipment. Some labs will need to be complete outside of class. The procedure for writing formal lab reports is on the last page of this syllabus.

Grade Policy

I. Grade Break Down

Since AP Biology is designed to be analogous to an entry-level college course, the bulk of the grade will come from exams. The grade breakdown is as follows:

Units Exams:	70%
Labs:	20%
Homework and Quizzes:	5%
Semester Projects:	5%

II. Grading Scale

-	90-100%	Worth a score of 4
-	80-89%	Worth a score of 3
-	70-79%	Worth a score of 2
-	60-69%	Worth a score of 1
-	Below 60%	Worth a score of 0
	- - - -	- 90-100% - 80-89% - 70-79% - 60-69% - Below 60%

Make-up Work/Late Work

I. Make-up Work

This opportunity is only for students who had **EXCUSED** absences. Students shall receive in length no less than the number of days they were absent to turn in the assignment. All assignments can be found under the sign "homework center" in room 135. Extra copies of all assignments can be found in the blue bin titled "AP Biology". If a student is absent on the day of an exam, the student will take the exam on the first day back from the absence. For labs, students have 10 school days to reschedule a make-up lab.

II. Late Work

Late work will be accepted up to five calendar days from the date due to be turned-in. Each day late up the fiveday limit will be penalized 10% off the correct score of the assignment. No assignments will be accepted after five calendar days.

Semester 1 Term Paper

Students may choose any topic that is related to a unit discussed in the first semester for this research paper. The criteria for this paper are listed below.

- 1. 6-8 pages, not including cover sheet, diagrams, graphs, or references
- 2. 12 pt. font, 1-1/2 spacing, one-inch margins
- 3. Minimum of 6 parenthetical citations, and works cited page in MLA format

Timeline for paper completion:

 \rightarrow Topic proposal due week 8 of 1st quarter. A short paragraph stating what you want to research and why.

- \rightarrow Photocopies and printouts of 6 sources are due for approval by week 3 of quarter 2.
- \rightarrow Outline is due week 5 of quarter 2.
- \rightarrow Final copy due 2 class periods before semester 1 final.

■ Semester 2 Project

Students will be given a project to complete during the second semester. Topic and timeline will be given in the first week of the second semester. Previous projects have included, making scientific videos, conducting outreach demonstrations at local grade schools, and conducting original scientific research.

2012-2013 AP Biology Curriculum Guide - 90 minute revolving blocks

Legend

• (MT#): Major Theme

I. Molecules and Cells (Overarching Theme #1)

• Blue: Lab Objectives

A. The Chemistry of Life

Day	Class Topic	Objectives	Purves Readings	Labs	Demos	Assignments
1	 Orientation/Lab Tour Core Themes of Biology Elements and Compounds 	 Identify evolution as the foundation of modern biological models and thought (MT 2) List the elements necessary for life to exist Explain ionic and covalent bonding Describe how biological structure is related to function (MT 5) Explain how conditions on early Earth set the stage for evolution of life (MT 2) 	Ch. 1 (1-14) Ch. 2 (15-25)			
2	 Properties of Water Solutions and Molarity 	 Explain how the special properties of water allow life to exist on our planet Demonstrate how molarity is calculated Create a solution of known molarity 	Ch. 2 (26-28)	 Solution Lab (25 minutes) 	► Water Tricks	
3	■ pH and Buffers	 Describe how the self ionization of water leads to the pH scale Define an acid and base Explain how buffers help maintain homeostasis (MT 6) Determine the effectiveness of a biological buffer by creating a titration curve Describe how acid rain poses a threat to the environment (MT 8) 	Ch. 2 (28-30)	► Buffer Lab		
4	 Carbon and the Molecular Diversity of Life Dehydration Synthesis and Macromolecules Structure and Function of Macromolecules 	 Explain how carbon's versatility leads to diverse carbon compounds (MT 5) Describe isomerism and the medical importance of enantiomers (MT 5) Explain how functional groups contribute to molecular diversity (MT 5) Illustrate how biological polymers are formed Describe the structure and function of different carbohydrates (MT 5) 	Ch. 3 (35-60)		► The effect Thalidomide and other important medical enantiomers have on the body	Functional group flashcards
5	 Structure and Function of Macromolecules 	 Describe the structure and function of various lipids (MT 5) Describe the structure of amino acids and the role of proteins in the body (MT 5) 	Ch. 3 (35-60)		► Effects of pH and temp on protein structure	National Geographic Article on human evolution

5		• Describe the 4 levels of			Amino -Acid
Cont		protein structure and how			Prelab
		function depends on			(overnight)
		conformation (MT 5)			
		• Describe the structure of			
		nucleic acids and their role			
		in the body (MT 5)			
		• Explain how nucleic acids			
		can be used to track			
		evolution (MT 2)			
6	■ Structure and Function of	• Separate amino acids in a	Ch. 3	Separation	EXAM 1
	Macromolecules	solution using paper	(35-60)	of amino	REVIEW
		chromatography		acids by	
	 Article Discussion 	 Explain how scientists 		paper	
		track human evolution		chromatog.	
		using genetic markers			
		(from article)		(90 minutes)	
7	UNIT 1 EXAM (CH	[. 1-3)			

B. Metabolism

Day	Class Topic	Objectives	Purves Readings	Labs	Demos	Assignments
8	 Introduction to Metabolism 	 Explain the role of free energy in biological systems (MT 3) Describe how ATP couples exergonic and endergonic reactions (MT 3) Explain how enzymes catalyze reactions Describe how Enzyme action is regulated (MT 6) 	Ch. 6 (106-124)		► Modeling enzyme activity with toothpicks	Enzyme Lab Prelab (overnight)
9	 Introduction to Metabolism 	 Determine the rates for enzymatically catalyzed reactions Design an experiment to measure the effect on enzyme activity produced by temperature, pH, enzyme concentration, and substrate concentration 	Ch. 6 (106-124)	 Enzyme Lab (AP #2) (90 minutes) 		
10	 Animal Nutrition 	 Compare and contrast digestion by food vacuoles, gastrovascular cavities, and alimentary canals (MT 5) Describe the structure and function of the major components of the human digestive system (MT 5) List the major enzymes and their actions in digestion of carbs, lipids, and proteins 	Ch. 50 (961-981)		 Digestion of protein in meat Action of bile 	Comparative anatomy prelab (overnight)
11	 Animal Nutrition 	 Locate, compare, and contrast digestion by food vacuoles, gastrovascular cavities, and alimentary canals using representative organisms (MT 5) Describe the evolutionary adaptations of vertebrate digestive systems (MT 2) 	Ch. 50 (961-981)	Comparative anatomy lab (Digestive system)		

12	 Plant Nutrition 	 List nutrients essential to plants Describe the effects of nutrient deficiency on plants Describe the process of nitrogen fixation (MT 3) 	Ch. 33 (716-728)	► Plant Hydroponic nutrient demo
13	UNIT 2 EXAM (CH	6, 50, 33)		

C. Exchanging Materials with the Environment

Day	Class Topic	Objectives	Purves Readings	Labs	Demos	Assignments
14	 Membrane Structure and Function 	 Describe the evolution of membrane models (MT 1) Describe the processes of diffusion and osmosis (MT 3) Explain the role of water potential in biological systems (MT 6) Explain the roles of membrane proteins in active transport (MT 5/6) 	Ch. 5 (87-105)		► Gas and Liquid Diffusion	Diffusion / Osmosis Prelab (AP #1) (overnight)
15	 Membrane Structure and Function 	 Measure water potential of a solution in a controlled experiment Relate osmotic potential to solute concentration and water potential Design an experiment to measure the effect of solute concentration on water potential 	Ch. 5 (87-105)	 Diffusion / Osmosis (AP #2) (90 minutes) 		Comparative anatomy prelab (Circulatory system) (overnight)
16	 Circulation and Gas Exchange 	 Compare and contrast gastrovascular cavities, open, and closed circulatory systems (MT 5) Describe the components and function of the vertebrate circulatory systems (MT 5) Identify components of open and closed circulatory systems using representative organisms (MT 6) 	Ch. 49 (940-984)	 Comparative anatomy lab (Circulatory system) (60 minutes) 		Physiology of the circula- tory system Prelab (AP #10) (overnight)
17	 Circulation and Gas Exchange 	 Explain how a pressure differential is created in blood vessels (MT 5) Measure heart rate and blood pressure on a human Describe the effect of exercise and body position on blood pressure Measure the effect of temperature on heart rate 	Ch. 49 (940-984)	 Physiology of the circulatory system (AP #10) (60 minutes) 		Comparative anatomy prelab (Respiratory system) (overnight)
18	 Circulation and Gas Exchange 	 Compare and contrast respiration through skin, gills, tracheae, and lungs (MT 5) Explain how respiratory 	Ch. 49 (940-984)	 Comparative anatomy lab (Respiratory system) (60 minutes) 		

		organs have evolved to suit				
		an organisms habitat				
		(MT 2)				
		• Locate and identify				
		components of the				
		respiratory systems of				
		representative organisms				
19	 Controlling the Internal 	• Describe osmoregulation in	Ch. 41	Comparative		
	Environment	biological systems (MT 6)	(780-798)	anatomy lab		
		Compare and contrast	Ch. 51	(Excretory		
		protonephridia,	(985-1001)	system)		
		metanephridia, Malpighian				
		tubes, and kidneys (MT 5)				
		• Explain how the nephron				
		regulates solute				
		concentration and prevents				
		water loss (MT 6)				
		• Identify the				
		osmoregulatory structures				
		of representative		(30 minutes)		
		organisms				
20	 Controlling the Internal 	• Explain how evolution has	Ch. 41	Comparative		
	Environment	provided variations of the	(780-798)	anatomy lab		
		vertebrate kidney (MT 2)	Ch. 51	(Excretory		
		• Describe different methods	(985-1001)	system)		
		of thermoregulation (MT 6)				
		• Compare the kidneys of				
		representative vertebrate		(60 minutes)		
01	- Treasurent in Disate	organisms	Ch 26		Calvarian	Turneningtion
21	Iransport in Plants	• Describe the movement of	Cn. 36		► Conesion	Transpiration
		water and solutes at the	(/01-/13)			(A D # 0)
		plant level (MT 5)				(AP #9)
		 Describe the observation of 				(Overnight)
		Describe the absorption of water by roots				
		(MT 5)				
		• Explain how transpiration				
		is controlled (MT 6)				
		 Describe bulk flow of 				
		phloem san (MT 5)				
22	Transport in Plants	Test the effects of	Ch 36	Transpiration		
~~		environmental variables on	(701-715)	(AP #10)		
		rates of transpiration using	(,			
		a controlled experiment		(90 minutes)		
23	UNIT 3 EXAM (CH	5, 49, 41, 51, 36)		1	1	1
		, ㅋノ, ㅋェ, .ェ, .ʋ				

D. Energy Transformation

Day	Class Topic	Objectives	Purves Readings	Labs	Demos	Assignments
24	 Photosynthesis 	 Explain the significance of the discovery that chloroplasts split water (MT 1) Describe the process of cyclic and noncyclic electron flow (MT 3) 	Ch. 8 (145-163)		▶ "Bloody" chlorophyll	Photosynthesis prelab (AP #4) (Overnight)
25	 Photosynthesis 	 Describe the process of the Calvin cycle (MT 3) Explain the evolution of different methods of carbon fixation (MT 2) 	Ch. 8 (145-163)	 Photo- synthesis (AP #4) (60 minutes) 		

		• Identify photosynthesis as				
		the biospheres foundation				
		(MT 7)				
		 Separate pigments and 				
		calculate their R _a values				
		\bullet Compare photosynthetic				
		• Compare photosynthetic				
		intensities or different				
		we we have the				
26	— Dhatasanthasia	- E-mlain subset the meta of	Ch 9	D hata		
26		• Explain why the rate of	$Cn. \delta$	Photo-		
	Call Is Deminstic	photosynthesis varies	(145-105)	synthesis		
	 Cellular Respiration 	under different conditions	Ch. /	(AP #4)		
		• Explain cellular respiration	(125-144)			
		in terms of redox (MT 3)				
		• Describe the oxidation of				
		glucose in glycolysis				
		(MT 3)				
		• Describe the Krebs cycle				
		(MT 3)				
		• Explain the role of the				
		mitochondrial membrane		(15 minutes)		
		in chemiosmosis (MT 3)		(10 1111100)		
27	 Cellular Respiration 	• Describe fermentation as	Ch. 7	Cellular		
		an alternative to cellular	(125-144)	Respiration		
		respiration (MT 3)		(AP #5)		
		 Explain how glycolysis 				
		and the Krebs cycle				
		connect to other metabolic				
		pathways (MT 3)				
		• Describe how cellular				
		respiration is controlled				
		(MT 6)				
		• Describe the reaction of				
		CO_2 and KOH		(20 minutes)		
28	 Cellular Respiration 	• Calculate the rate of cell	Ch. 7	► Cellular		
20	Ĩ	respiration from	(125-144)	Respiration		
		experimental data		(AP #5)		
		• Test the rate of cellular				
		respiration in germinating		(00 minutes)		
		and nongerminated seeds		(30 minutes)		
20	LINIT A EVAN	U 7 0)	1	1	I	I
27	UNII 4 ĽAANI (C.	П /,0)				

E. Cells

Day	Class Topic	Objectives	Purves Readings	Labs	Demos	Assignments
30	• A Tour of the Cell	 Compare and contrast eukaryotic and prokaryotic cells (MT 5) Explain why cells must maintain a high surface area to volume ratio (MT 5) Describe the structure and function of eukaryotic organelles and cytoskeleton (MT 5) 	Ch. 4 (61-86)			
31	■ The Cell Cycle	 List the functions of cell division (MT 5) Compare and contrast cell division in prokaryotes and eukaryotes (MT 5) 	Ch. 9 (164-186)			

		• Describe the steps in the cell cycle in eukaryotes (MT 5)			
32	■ The Cell Cycle	 Describe how cell division is controlled (MT 6) Recognize the stages of mitosis in a plant or animal cell Calculate the relative duration of the cell cycle stages 	Ch. 9 (164-176)	 Mitosis and Meiosis (AP #3A) (60 minutes) 	
33	 The Molecular Basis of Heredity 	 Describe the experiments that led to the recognition of DNA as the material of heredity (MT 1) Describe the process of DNA replication (MT 4) 	Ch. 11 (213-232)		
34	UNIT 5 EXAM (C	H 4, 9, 11)			

II. Genetics and Evolution (Overarching Theme #2)

A. Heredity

Day	Class Topic	Objectives	Purves Readings	Labs	Demos	Assignments
35	 Meiosis and Sexual Life Cycles 	 Describe the steps of meiosis (MT 4) Explain how crossing over leads to genetic recombination (MT 4) Use chromosome models to demonstrate the activity of chromosomes during meiosis I and II Calculate the map distance of a particular gene from a chromosomes centromere 	Ch. 9 (177-181)	 Mitosis and Meiosis (AP #3B) (50 minutes) 		
36	 Animal Reproduction 	 Compare and contrast reproductive systems in invertebrates and vertebrates (MT 5) Describe the process of spermatogenesis and oogenesis in terms of meiosis (MT 4) Explain hormonal control of reproduction (MT 6) 	Ch. 43 (820-843)			
37	 Animal Reproduction Animal Development 	 Locate and compare reproductive systems in invertebrates and vertebrates Explain how fertilization activates the egg and joins sperms and egg nucleus (MT 4) 	Ch. 43 (820-843) Ch. 20 (408-428)	 Comparative Anatomy Lab (reproduction) (60 minutes) 		
38	 Animal Development 	 Describe the role of cleavage and gastrulation in animal development (MT 4) Explain how organs are derived from germ layers (MT 4) 	Ch. 20 (408-428)		► Frog development slides	

		• Describe how environment,				
		location, and cell-cell				
		interactions determine the				
		developmental fate of cells				
		(MT 6)				
39	 Plant Reproduction and 	• Diagram the parts of a	Ch. 39	► Fruit Lab		
• •	Development	flower (MT 5)	(749-764)			
	-	• Describe how pollination				
		occurs (MT 4)				
		• Explain seed and fruit				
		development (MT 4)				
		Identify various				
		classifications of fruits		(30 minutes)		
39	 Plant Reproduction and 	Describe evolutionary	Ch. 29		► Clones	
	Development	adaptations in seed	(570-587)		from cutting	
	-	germination (MT 2)	Ch. 30		_	
		Describe vegetative	(588-602)			
		reproduction (MT 4)				
		• Explain how plant cells				
		differentiate (MT 6)				
40	 Mendelian Genetics 	• Describe Mendel's	Ch. 10			Law of multi-
		experiments with pea	(187-212)			plication
		plants (MT 1)				problems
		• Explain Mendel's three				
		laws (MT 2)				Punnett
		• Explain the exceptions to				Square
		Mendelian genetics (MT 2)				problems
		• Describe human disorders				
		that follow Mendel's laws				Pedigree
		of inheritance (MT 2)				analysis
		• List the tools scientists use				questions
		to study genes (MT 8)				
41	■ The Chromosomal Basis	• Describe Thomas Morgan's	Ch. 10			Genetics of
	of Inheritance	experiments with fruit flies	(187-212)			organisms
		that traced genes to				prelab
		chromosomes (MT 1)				(Overnight)
		• Describe gene linkage				
		(MT 4)				
		• Explain how recombination				
		frequencies can be used to				
		create a gene map (NI 1 8)				
		• Explain sex-linkage and				
12	- The Chromosomal Pasia	Describe how changes in	Ch 0	Constiss of		
42	of Inheritance	Describe now changes in chromosome number lead	(182, 184)	► Ochetics 01 Organisms		
	or internance	to disorders (MT 4)	(102-104)	$(\Delta P \# 7)$		
		 Investigate independent 		(211 177)		
		assortment of two genes				
		and determine sex-linkage				
				(45 minutes)		
43	UNIT 6 EXAM (CH	<u>1 9, 43, 20, 39, 29, 30, 10</u>), 9)			

B. Molecular Genetics

Day	Class Topic	Objectives	Purves Readings	Labs	Demos	Assignments
44	■ From Gene to Protein	 Explain the discovery that genes specify for proteins (MT 1) Describe transcription and translation in eukaryotes (MT 4) 	Ch. 12 (233-256)		 Protein synthesis party 	

		Describe RNA				
		modification (MT 6)				
		• Explain how point				
		mutations effect protein				
		products (MT 2)				
45	Microbial Models:	• Describe the discovery of	Ch. 13		Virus	
	genetics of viruses and	viruses (MT 1)	(257-278)		slideshow	
	bacteria	• Explain the steps, compare,				
		and contrast the lytic and				
		lysogenic cycle (MT 4)				
		• Discuss the link between				
1.6		viruses and cancer (MI 8)	01 12			
46	■ Microbial Models:	• Describe the methods of	Ch. 13	Genetics of		
	genetics of viruses and	genetic recombination in	(257-278)	Organisms		
	bacteria	bacteria (MII4)		(AP #/)		
		• Define transposons and				
		recombination (MT 4)				
		• Explain how gene				
		expression is controlled in				
		bacteria (MT 6)		(20 minutes)		
47	■ Genome Organization	• Describe the levels of	Ch. 14			
• /	and Expression in	chromatin packing (MT 5)	(279-300)			
	Eukaryotes	• Describe the points of	· · · ·			
	, j	eukaryotic control of gene				
		expression (MT 6)				
		• Explain how chemical				
		modification of DNA can				
		alter gene expression				
		(MT 6)				
		• Explain hoe abnormal gene				
		expression can lead to				
10	- DNA Technology	 Describe the process of 	Ch 16	Consting of		
48	■ DNA Technology	• Describe the process of gene cloping and its	(217, 228)	Genetics of Organisms		
		applications (MT 8)	(317-338)	(AP #7)		
		 Describe additional 	(339-363)	(211 117)		
		methods for analyzing and	(33) 303)			
		cloning nucleotide				
		sequences (MT 8)		(20 minutes)		
49	 DNA Technology 	• Use plasmids as vectors to	Ch. 16	► Molecular	► DNA	
	(DNA Day Field Trip)	transform bacteria	(317-338)	Biology	Video	
		• Use gel electrophoresis to	Ch. 17	(AP #6)		
		separate DNA fragments	(339-363)	► Western		
		• Calculate transformation		Blotting		
		efficiency		► Immuno		
		• Detect certain sequences in		Assay		
	(480 minutes)	a DNA sample by		(360 minutes)		
50				(Sou minutes)		1
50	UNIT 7 EXAM (CH	1 12, 13, 14, 16, 17)				

C. Evolution

Day	Class Topic	Objectives	Purves Readings	Labs	Demos	Assignments
51	 Descent with 	• Explain the observations	Ch. 23			
	Modification: Darwin	and inferences that led to natural selection (MT 1)	(460-480)			
	 Evolution of Populations 	 Describe evidence that validates evolutionary views (MT 2) Explain how the Hardy- 				

		Weinberg theorem			
		describes nonevolving			
		populations (MT 2)			
		• Define microevolution and			
		the conditions that lead to			
		it (MT2)			D 1.2
52	 Evolution of Populations 	• Describe the 5 causes of	Ch. 24		Population
		microevolution and the	(481-495)		genetics and
		(MT 1)			proleb (AD #8)
		(WIII) • Explain how constin			(Overnight)
		• Explain now genetic variation is the substrate of			(Overnight)
		natural selection (MT 2)			
		 Explain how natural 			
		selection is the mechanism			
		for adaptive evolution			
		(MT 2) ¹			
53	 Evolution of Populations 	• Calculate frequencies of	Ch. 24	Population	
		alleles and genotypes in the	(481-495)	Genetics	
		gene pool of a population		and	
		using hardy-Weinberg		Evolution	
				(AP #6)	
				(90 minutes)	
54	The Origin of Species	• Describe reproductive	Ch. 24		
		barriers that separate	(481-495)		
		species (MT 2)			
		• Explain allopatric and			
		(MT 2)			
		(NII 2) • Explain the theory of			
		• Explain the meory of			
		(MT 2)			
55	Phylogeny and	• Trace the geological time	Ch. 22		
	Systematics	scale (MT 2)	(442-458)		
		• Describe the scientific			
		basis for macroevolution			
		(MT 2)			
		• Explain how molecular			
		biology is changing			
		systematics (MT 2)			
56	UNIT 8 EXAM (CH	[23, 24, 22)			

III. Organisms and Populations (Overarching Theme #3)

A. Survey of Organisms

Day	Class Topic	Objectives	Purves Readings	Labs	Demos	Assignments
57	 Prokaryotes and the Origins of Metabolic Diversity (Microbiology Week) 	 Describe the diverse adaptations to form and function in prokaryotes (MT 4) Explain how molecular systematics is leading to a phylogenic classification of prokaryotes (MT 2) Explain how molecular biology is changing systematics (MT 2) 	Ch. 27 (524-542)	 Unknown bacteria lab <u>Gram Stain</u> (45 minutes) 	▶ Bacterial slides	

58	 Prokaryotes and the Origins of Metabolic Diversity 	• Describe the characteristics of medically important bacilli and cocci (MT 8)	Ch. 27 (524-542)	 Unknown bacteria lab Catalase 		
	Diversity	• Use diagnostic		<u>OF Glucose</u>		
	(Microbiology Week)	microbiology techniques to identify an unknown bacteria (MT 8)		(45 minutes)		
59	 Prokaryotes and the 	• Describe the characteristics	Ch. 27	Unknown		
	Origins of Metabolic	of medically important	(524-542)	bacteria lab		
	Diversity	bacilli and cocci (MT 8)		OF Glucose		
		• Use diagnostic		Endospore		
	(Microbiology Week)	microbiology techniques to		<u>Acid-Fast</u>		
		identify an unknown				
		bacteria (MT 8)		(45 minutes)		
60	■ The Origins of	• Explain the endosymbiotic	Ch. 28	Protist Lab		
	Eukaryotic Diversity	theory as the proposed	(543-569)			
		mechanism for the origin				
		• Describe the classification				
		• Describe the classification of major phyla of protists				
		and describe their form				
		and function (MT 5)		(40 minutes)		
61	Plants and the	• Describe the structural and	Review of	▶ Plant		
01	Colonization of land	reproductive adaptations	Ch. 29-30	Evolution Lab		
		that made the colonization		(School		
		of land possible (MT 2)		grounds)		
		• Describe the life cycle of				
		mosses, ferns, conifers,				
		and angiosperms (MT 4)	<u> </u>	(90 minutes)		
62	Plant Structure and	• Compare and contrast the	Ch. 35	► Plant Leat,		
	Growth	root, shoot, and leaf	(682-700)	Koot, Shoot, Tissue Leb		
		dicots (MT 5)		Tissue Lab		
		• Describe the structure and function of plant tissues				
		(MT 5)				
		• Explain the function of				
		meristems and apical				
		dominance (MT 6)		(45 minutes)		
63	 Fungi 	Describe how fungi have	Ch. 31	► Fungi Lab		
	_	evolved to a saprozoic	(603-618)	_		
		form of nutrition (MT 2)				
		• Describe the life cycle of				
		various fungi (MT 4)				
		• Identify key structures on		(60 minutos)		
6.4	 Invertebrates and the 	 Identify the major splits in 	Ch 32	(ou minutes)		
04	Origins of Animal	the phylogeny of animals	(619-640)	lah (sponges		
	Diversity	(MT 2)	(019-040)	cnidarians		
	Diversity	• Explain the evolutionary		flatworms)		
		significance of				
		cephalization (MT 2)				
		• Describe the structure and				
		function of acoelomate				
		organisms (MT 5)				
		• Identify key structures and				
		function of acoelomate		(15 minutes)		
6.E	 Invertebrates and the 	Organisms Describe the evolutioner:	Ch 22	(45 minutes)		
03	Origins of Animal	significance of a body	(619-640)	lah (molluske	Nematode	
	Diversity	cavity (MT 2)		and annelids)	slideshow	
		• Describe the structure and		(45 minutes)		

		function of nematodes, and			
		protostomes (MT 5)			
		• Identify key structures and			
		function of protostome			
		organisms			
66	 Invertebrates and the 	• Describe the structure and	Ch. 33	Protostome	
	Origins of Animal	function of arthropods	(641-654)	and	
	Diversity	(MT 5)		deuterostome	
		• Describe the structure and		lab (arthropods	
		function of deuterostomes		and	
		(MT 5)		echinoderms)	
		• Identify key structures and			
		function of protostome and			
		deuterostome organisms		(45 minutes)	
67	■ The Vertebrate	• List the four hallmark	Ch. 34	Fish Lab	
	Genealogy	characteristics of chordates	(655-681)		
		(MT 5)			
		• Describe the structure and			
		function of the major			
		classes of fish (MT 5)			
		• Identify key structures and			
		function of fish		(60 minutes)	
68	■ The Vertebrate	• Describe the structure and	Ch. 34	Amphibian,	
	Genealogy	function of the amphibians,	(655-681)	Reptile, and	
		reptiles, and birds (MT 5)		Bird Lab	
		• Identify key structures and			
		function of amphibians,			
		reptiles, and birds		(60 minutes)	
69	■ The Vertebrate	• Describe the evolution of	Ch. 34		
	Genealogy	mammals (MT 2)	(655-681)		
		• Use primate development			
		to explain human origins			
		(MT 2)			
Surv	vey of Organisms Pac	cket Due			

B. Responding to the Environment

Day	Class Topic	Objectives	Purves Readings	Labs	Demos	Assignments
70	■ The Body's Defenses	 Describe nonspecific mechanisms of defense (MT 5) List the key features of the immune system (MT 6) Describe clonal selection of lymphocytes (MT 6) Explain the process of humoral immune response (MT 4) 	Ch. 18 (364-389)			
71	■ The Body's Defenses	 Explain the process of the cell-mediated immune response (MT 4) List the key features of the immune system (MT 6) Describe the role of complement proteins in the immune system (MT 5) Describe how abnormal immune function leads to disease states (MT 6) 	Ch. 18 (364-389)			
72	 Nervous Systems 	• Describe the structure and function of a neuron	Ch. 44 (844-864)			

73	 Nervous Systems 	 (MT 5) Explain how action potentials care created and propagated (MT 6) Describe the role of neurotransmitters (MT 5) Describe the hierarchy of the vertebrate nervous system (MT 5) Describe the evolution of the human brain and its structure and function (MT 2) 	Ch. 44 (844-864)		
74	 Sensory and Motor Mechanisms 	 Describe the function of photoreceptors (MT 5) Explain the relationship between hearing and balance (MT 5) Explain how taste and smell are related (MT 5) Explain the contraction of muscles (MT 5) 	Ch. 45 (865-884)		
75	 Chemical Signals in Animals 	 Describe how hormones signal mechanisms at the cellular level (MT 5) Explain the role of secondary messengers and protein kinases (MT 6) Identify control systems in invertebrates and the integration of the endocrine and nervous systems (MT 5) 	Ch. 42 (799-819)		
76	 Chemical Signals in Animals 	 Describe the key components of the vertebrate endocrine systems and their functions (MT 5) 	Ch. 42 (799-819)		
77	 Control Systems in Plants 	 Describe the role of plant hormones in the control of growth, development, and response (MT 6) Define photoperiodism and its role in seasonal change (MT 4) Identify control systems in plants (MT 6) 	Ch. 38 (729-748)		
78	Behavior	 Compare and contrast between innate behavior and learned behavior (MT 2) Describe how competitive behaviors represent contests for resources (MT 2) Relate inclusive fitness and altruism (MT 2) 	Ch. 52 (1002- 1023)		
79	 Behavior 	• Describe some aspects of observed animal behavior (MT 2)	Ch. 52 (1002- 1023)	 Animal Behavior (AP #11) (90 minutes) 	

80 UNIT 10 EXAM (CH 18, 44, 45, 42, 38, 52)

C. Interactions and Interdependence

Day	Class Topic	Objectives	Purves Readings	Labs	Demos	Assignments
81	 Population Ecology 	 Explain how demography is used to study factors that affect birth and death rates (MT 7) Describe variation of life histories among organisms (MT 7) Compare and contrast exponential and logistic population growth models (MT 7) 	Ch. 54 (1037- 1054)			
82	 Community Ecology 	 Identify community interactions that are selection factors in evolution (MT 2/7) Compare and contrast predation, parasitism, commensalism, and mutualism (MT 7) Explain the process of succession in ecosystems (MT 7) 	Ch. 55 (1055- 1068)			
85	■ Ecosystems	 Explain the trophic structure of ecosystems (MT 7) Relate available energy to primary productivity (MT 7) Explain how human activity is disrupting chemical cycles (MT 8) 	Ch. 55 (1055- 1068)			
86	 Ecosystems 	 Measure primary productivity based on changes in dissolved oxygen Investigate the effects of changing light intensity on primary productivity 	Ch. 55 (1055- 1068)	 Dissolved Oxygen and Aquatic primary Productivity (AP #12) (90 minutes) 		
87	 Species Scavenger Hunt 			· · · · · · · · · · · · · · · · · · ·		
88	 Species Scavenger Hunt 					

\rightarrow \rightarrow	8310 Minutes (Including 480 minutes field trip) 2490 Minutes
\rightarrow	29.9% = 30%
	\rightarrow \rightarrow \rightarrow